Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(3-1): 034605, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266899

RESUMO

The motility-induced phase separation exhibited by active particles with repulsive interactions is well known. We show that the interaction softness of active particles destabilizes the highly ordered dense phase, leading to the formation of a porous cluster which spans the system. This soft limit can also be achieved if the particle motility is increased beyond a critical value, at which the system clearly exhibits all the characteristics of a standard percolation transition. We also show that in the athermal limit, active particles exhibit similar transitions even at low motility. With these additional new phases, the phase diagram of repulsive active particles is revealed to be richer than what was previously conceived.

2.
Phys Rev E ; 103(5-1): 052605, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134326

RESUMO

Using a minimal model of active Brownian particles, we study the effect of a crucial parameter, namely the softness of the interparticle repulsion, on motility-induced phase separation. We show that an increase in particle softness reduces the ability of the system to phase separate and the system exhibits a delayed transition. After phase separation, the system state properties can be explained by a single relevant length scale, the effective interparticle distance. We estimate this length scale analytically and use it to rescale the state properties at dense phase for systems with different interaction softness. Using this length scale, we provide a scaling relation for the time taken to phase separate which shows a high sensitivity to the interaction softness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...